Sums of Primes and Squares of Primes in Short Intervals
نویسنده
چکیده
Let H2 denote the set of even integers n 6≡ 1 (mod 3). We prove that when H ≥ X, almost all integers n ∈ H2 ∩ (X,X + H] can be represented as the sum of a prime and the square of a prime. We also prove a similar result for sums of three squares of primes.
منابع مشابه
Higher Correlations of Divisor Sums Related to Primes I: Triple Correlations
We obtain the triple correlations for a truncated divisor sum related to primes. We also obtain the mixed correlations for this divisor sum when it is summed over the primes, and give some applications to primes in short intervals.
متن کاملOn the symmetry of primes in almost all short intervals
– In this paper we study the symmetry of primes in almost all short intervals; by elementary methods (based on the Large Sieve) we give, for h x log x (c > 0, suitable), a non-trivial estimate for the mean-square (over N < x ≤ 2N) of an average of “symmetry sums”; these sums control the symmetry of the von-Mangoldt function in short intervals around x. We explicitly remark that our results are ...
متن کاملOn the variance of sums of arithmetic functions over primes in short intervals and pair correlation for L-functions in the Selberg class
We establish the equivalence of conjectures concerning the pair correlation of zeros of L-functions in the Selberg class and the variances of sums of a related class of arithmetic functions over primes in short intervals. This extends the results of Goldston and Montgomery [‘Pair correlation of zeros and primes in short intervals’, Analytic number theory and Diophantine problems (Stillwater, 19...
متن کاملHigher Correlations of Divisor Sums Related to Primes Iii: Small Gaps between Primes
We use divisor sums to approximate prime tuples and moments for primes in short intervals. By connecting these results to classical moment problems we are able to prove that, for any η > 0, a positive proportion of consecutive primes are within 4 + η times the average spacing between primes. Authors’ note. This paper was written in 2004, prior to the solution, in [8], of the problem considered ...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008